
Sitecore CMS 6
Microsoft ASP.NET Security Vulnerability 2416728 Rev: 2010-09-27

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2010 Sitecore. All rights reserved.

Sitecore CMS 6

Microsoft ASP.NET Security
Vulnerability 2416728
Sitecore's recommendations for working around this vulnerabil ity

Last updated: 2010-09-27

Sitecore CMS 6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2010 Sitecore. All rights reserved.

Page 2 of 4

Microsoft ASP.NET Security Vulnerability

2416728

Sitecore recommends that you follow these instructions to address the Microsoft ASP.NET Security
Vulnerability 2416728.

http://www.microsoft.com/technet/security/advisory/2416728.mspx

or

http://weblogs.asp.net/scottgu/archive/2010/09/18/important-asp-net-security-vulnerability.aspx

Important

The steps described in this article are a temporary solution and should be rolled back when Microsoft
releases an official fix.

Applying this solution may have the following side effects when processing requests that are
configured in IIS to be forwarded to the ASP.NET process:

1. Going through Sitecore pipelines adds a minor overhead when serving static files.

2. The application will attempt to resolve any request going to the ASP.NET process as a
Sitecore item regardless of the requested extension. For example, both /home.aspx and

/home.html will resolve to an item with the name “Home”.

An example of a modified web.config file (from the clean installation of Sitecore 6.2.0 rev. 100507)

and the source code of the Sitecore.Support.MSA2416728v6000.dll file can be found in the

package that is attached to this article.

Instructions

1. Find the FilterUrlExtensions processor of the preprocessRequest pipeline in the

web.config file and make the following changes:

<preprocessRequest help="Processors should derive from

Sitecore.Pipelines.PreprocessRequest.PreprocessRequestProcessor">

 ...

 <processor type="Sitecore.Pipelines.PreprocessRequest.FilterUrlExtensions,

Sitecore.Kernel">

 <param desc="Allowed extensions (comma separated)">*</param>

 <param desc="Blocked extensions (comma separated)"></param>

 <param desc="Blocked extensions that stream files (comma separated)">*</param>

 <param desc="Blocked extensions that do not stream files (comma separated)">

 </param>

 </processor>

 ...

</preprocessRequest>

2. Add a CustomErrorPage.aspx file to your application that contains the appropriate HTML

contents. This file will be displayed every time an error occurs within the web application. An

http://www.microsoft.com/technet/security/advisory/2416728.mspx
http://weblogs.asp.net/scottgu/archive/2010/09/18/important-asp-net-security-vulnerability.aspx

Microsoft ASP.NET Security Vulnerability 2416728

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2010 Sitecore. All rights reserved.

Page 3 of 4

example of the CustomErrorPage.aspx can be found in the package that is attached to

this article.

3. Add the following code to the Page_Load() server event handler in the

CustomErrorPage.aspx file. This adds a random, small sleep delay.

<script type="text/C#" runat="server">

protected void Page_Load(object sender, EventArgs e)

{

 Response.Clear();

 Response.Cache.SetCacheability(HttpCacheability.NoCache);

 byte[] delay = new byte[1];

 System.Security.Cryptography.RandomNumberGenerator prng = new

System.Security.Cryptography.RNGCryptoServiceProvider();

 prng.GetBytes(delay);

 System.Threading.Thread.Sleep((int)delay[0]);

 IDisposable disposable = prng as IDisposable;

 if (disposable != null) { disposable.Dispose(); }

}

</script>

4. Set the following Sitecore settings in the web.config file to point to

/CustomErrorPage.aspx file:

ErrorPage, ItemNotFoundUrl, LayoutNotFoundUrl, LinkItemNotFoundUrl,

NoAccessUrl, NoLicenseUrl.

For example:

<setting name="ErrorPage" value="/CustomErrorPage.aspx" />

5. In the web.config file, set the value of the RequestErrors.UseServerSideRedirect

setting to true.

6. Add the Sitecore.Support.MSA2416728v6000.dll file from the package that is

attached to this article the \bin folder of your Sitecore solution.

7. If you are running .NET 3.5 with SP1, make the following modifications to the customErrors

section of the web.config file:

 <!-- The "defaultRedirect" attribute should contain the path to your custom error page

-->

 <customErrors mode="On" redirectMode="ResponseRewrite"

defaultRedirect="/CustomErrorPage.aspx" />

8. If you are running .NET 3.5 without SP1, make the following modifications to the
customErrors section of the web.config file:

 <!-- The "defaultRedirect" attribute should contain the path to your custom error page

-->

 <customErrors mode="On" defaultRedirect="/CustomErrorPage.aspx" />

9. In the web.config file, add the following HTTP module definitions to both the

/configuration/system.web/httpModules section and the

/configuration/system.webServer/modules section:

 <system.webServer>

 <modules>

 ...

 <add type="Sitecore.Support.MSA2416728v6000.RedirectOnError,

Sitecore.Support.MSA2416728v6000" name="SitecoreRedirectOnError" />

 </modules>

 ...

 <system.webServer>

 <system.web>

 ...

 <httpModules>

 ...

 <add type="Sitecore.Support.MSA2416728v6000.RedirectOnError,

Sitecore.Support.MSA2416728v6000" name="SitecoreRedirectOnError" />

 </httpModules>

Sitecore CMS 6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2010 Sitecore. All rights reserved.

Page 4 of 4

 ...

 </system.web>

10. In the web.config file, in both the /configuration/system.web/httpHandlers

section and the /configuration/system.webServer/handlers section, replace the

Sitecore.Resources.Media.MediaRequestHandler, Sitecore.Kernel type

reference with Sitecore.Support.Resources.Media.MediaRequestHandler,

Sitecore.Support.MSA2416728v6000.

11. Install IIS UrlScan and add a custom rule as described in the Microsoft Security Advisory
(after the Using UrlScan heading in the Workarounds section):

http://www.microsoft.com/technet/security/advisory/2416728.mspx

If you are using IIS7.5, you can configure IIS request filtering as an alternative to installing IIS
UrlScan. This approach is described in the Microsoft Security Advisory (after the Using IIS
request filtering heading in the Workarounds section):

http://www.microsoft.com/technet/security/advisory/2416728.mspx

For more information about UrlScan, see the following Microsoft ASP.NET blog post:

http://weblogs.asp.net/scottgu/archive/2010/09/24/update-on-asp-net-vulnerability.aspx

	Microsoft ASP.NET Security Vulnerability 2416728
	Important
	Instructions

